
Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

A Correctness Verification Technique for Commercial FPGA Synthesis Tools

Eui-Sub Kim

 a
, Junbeom Yoo

 a
, Jong-Gyun Choi

 b
, Jang-Yeol Kim

 b
, Jang-Soo Lee

 b

a
Department of Computer Science and Engineering, Konkuk University, Seoul, 143-701, Korea
b
Korea Atomic Energy Research Institute, Deadeok-daero 989-111, Yuseong Daejeon, Korea

*
Corresponding author: jbyoo@konkuk.ac.kr

1. Introduction

The PLCs (Programmable Logic Controller) have

been widely used to implement the safety-critical system

such as RPSs (Reactor Protection System) in Korean

nuclear power plants. Recently, there have been

attempted to implement the software in RPSs by FPGAs

(Filed-Programmable Gate Array) [1][2], due to the

increasing maintenance cost of PLCs and the higher

performance of FPGAs.

The FPGAs are typically modeled with HDLs

(Hardware Description Languages) such as Verilog and

VHDL by software designers manually, and then

subsequently synthesized into gate-level design and

physical layout by software synthesis tools of FPGA

vendors (e.g., ‘Synopsis Synplify Pro’ [3] and ‘Cadence

Encounter RTL Compiler’ [4]). Once the FPGA

designers designs Verilog programs, the commercial

synthesis tools automatically translate the Verilog

programs into EDIF programs so that the designers can

have largely focused on HDL designs for correctness of

functionality.

Nuclear regulation authorities, however, require more

considerate demonstration of the correctness and safety

of mechanical synthesis processes of FPGA synthesis

tools, even if the FPGA industry have acknowledged

them empirically as correct and safe processes and tools.

In order to assure of the safety, the industry standards

for the safety of electronic/electrical devices, such as

IEC 61508 [5] and IEC 60880 [6], recommend using

the formal verification technique. There are several

formal verification tools (i.e., ‘FormalPro’ [7],

‘Conformal’ [8], ‘Formality’ [9] and so on) to verify the

correctness of translation from Verilog into EDIF

programs, but it is too expensive to use and hard to

apply them to the works of 3rd-party developers.

This paper proposes a formal verification technique

which can contribute to the correctness demonstration in

part. It formally checks the behavioral equivalence [10]

between Verilog and subsequently synthesized Netlist

with the VIS verification system [11]. A Netlist is an

intermediate output of FPGA synthesis process, and

EDIF [12] is used as a standard format of Netlists. If the

formal verification succeeds, then we can assure that the

synthesis process from Verilog into Netlist worked

correctly at least for the Verilog used.

In order to support the formal verification, we

developed the mechanical translator ‘EDIFtoBLIF-

MV,’ which translates EDIF into BLIF-MV [13] as an

input front-end of VIS system, while preserving their

behavior equivalence. It consists of three-steps –

Parsing, Pro-processing and Translation. On other hands,

the translation from Verilog to BLIF-MV is

straightforward because the VIS provides an in-house

translator ‘vl2mv’ [14], which translates Verilog into

BLIF-MV automatically.

We performed the case study with an example of a

preliminary version of RPS [15] in a Korean nuclear

power plant in order to provide the efficiency of the

proposed formal verification technique and

implemented translator. It uses the ‘Actel Libero IDE’

[16] (internally, ‘Synopsys Synplify Pro’ [3]) to

synthesize Netlist from the Verilog program, and also

uses the ‘EDIFtoBLIF-MV’ to translate Netlist into

BLIF-MV. The VIS verification system is then used to

prove the behavioral equivalence.

This paper is organized as follows: Section 2

provides background information. Section 3 explains

the developed tool, which translates EDIF to BLIF-MV.

A case study with Verilog examples of a Korean nuclear

power plant is presented in Section 4 and Section 5

concludes the paper and provides remarks on future

research extension.

2. Background

2.1 An FPGA Development Process

Fig.1 depicts a whole process of FPGA development

[17]. Software requirements are analyzed and refined in

requirements analysis and design phases, similar to the

conventional software development. The process

provides no standard form of requirements and design

specifications. In HDL coding phase, we need to

program the designs with HDLs such as Verilog or

VHDL, manually. Some FPGA vendors provide own

high-level design tools [18]. These tools use flow-charts,

state machines or block diagrams to model design

specification graphically, and generate HDL codes

mechanically.

Fig. 1. An FPGA development process

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

After programming Verilog (or VHDL) programs, an

FPGA is implemented mechanically thorough several

steps, such as gate-level synthesis, optimization,

placement & routing, design verification, configuration

and downloading. Software synthesis tools provided by

FPGA vendors such as ‘Xilinx ISE Design Suite’ [19],

‘Altera Quartus II’ [20] and ‘Actel Libero IDE’ [16]

support all these steps seamlessly and mechanically.

They also provide systematic verification and

simulation facilities for each synthesis step.

2.2 Hardware Description Language

An HDL (Hardware Description Language) is a

specialized computer language for describing the design

and operation of ICs (Integrated Circuits). It is a C-like

programming language, and easy to learn and use. It

enables HDL designers to design various levels of

modeling, such as gate-level, data-flow and behavioral-

level modeling, in combination. It can also make FPGA

designers focus on functional verification at the

early/beginning step of FPGA development.

Verilog [21] and VHDL [22] are the widely used

HDLs in industry. A number of electronic vendors and

EDA (Electronic Design Automation) tools use the

HDLs to synthesize gate level design. HDLs are also

widely used for logic verification as an input front-end

of formal verification and analysis tools such as SMV

[23], VIS [11] and HW-CBMC [24].

2.3 EDIF

EDIF (Electronic Design Interface Format) [12] is a

vendor neutral format in which to store Netlists and

schematics. It was one of the first attempts to establish a

neutral data exchange format for the EDA industries.

The latest version of EDIF is 4.0.0, but most FPGA

vendors still have used the version 2.0.0 which was first

approved as the standard ANSI/EIA-548-1998.

Nevertheless the effort for the neutral data exchange,

FPGA vendors keep modifying the EDIF format slightly

and appropriately for their own tools. The EDIFs of

various FPGA vendors are now not compatible with

each other. This paper uses the EDIF of ‘Actel Libero

IDE.’

2.4 VIS Verification System

The VIS [11] is a verification system integrating

formal verifications, simulation and synthesis of finite

states hardware systems. It uses Verilog as an input

front-end and supports fair CTL (Computational Tree

Logic) model checking [25], [26], language emptiness

checking, combinational equivalence checking,

sequential equivalence checking, cycle-based simulation

and hierarchical synthesis. It provides ‘vl2mv’ tool [14],

which translates a subset of Verilog into an intermediate

format BLIF-MV.

3. EDIFtoBLIF-MV

The translation process of ‘EDIFtoBLIF-MV’

consists of three-step as blocked in Fig.2. It first reads

an EDIF file and precedes the three-step and then saves

a BLIF-MV file. First, it parses the inputted EDIF file

text by text and then constructs the internal data

structure. Second, it proceeds pre-processing, which

delete unnecessary information from the internal data

structures. Finally, it translates the constructed data

structure into the BLIF-MV with translation rules. The

three-step is follow:

▪ Step 1. (Text Parsing) The ‘EDIFtoBLIF-MV’

parses the inputted EDIF text by text and then

constructs the internal data structure. The inputted

file format should follow the EDIF international

industry standard version 2.0.0 [12] and not include

any other syntactic errors.

▪ Step 2. (Pre-Processing) Before translating the

internal data structure into the EDIF, it processes

pre-processing, which delete unnecessary

information. For example, all ports of clk are ignored

in BLIF-MV, and we need to delete these

information. VCC cell and GND cell have a fixed

value such as 1 and 0, respectively. Thus, all ports

should have default value 0 and 1, respectively.

▪ Step 3. (Translation) The translation rules from

EDIF to BLIF-MV were researched by our previous

work [27]. While we translate EDIF to BLIF-MV

with previous research, however, we found some of

rules are not proper. Thus, we fixed and improved

them to apply ‘EDIFtoBLIF-MV.’ We are now

planning to define the translation rules more

formally and generally on the basis of [27] in order

to deal with all categories of combinational cells,

which the ‘Actel Libero IDE’ used.

Fig. 2. The Overall Process of Translation from EDIF to

BLIF-MV

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

The ‘EDIFtoBLIF-MV’ depicted in Fig.3

implemented the translation process from EDIF to

BLIF-MV, described in Fig.2. As other translators and

compilers, it has simple GUI to read an input file -

EDIF and to store the translated output file - BLIF-MV.

The console at the bottom shows the translation process

in steps, i.e., EDIF open → Parsing → Pre-processing

→ Translation → BLIF-MV Saving.

Fig. 3. A screen-dump of ‘EDIFtoBLIF-MV’

4. Case Study

This paper performed a case study with an example

of the KNICS APR-1400 RPS BP (Bistable Processor)

[15] in Korea. The BP reads 18 sensor values from a

nuclear reactor and decides to generate trip/pre-trip

signals out to shutdown the reactor immediately, if any

value is out of safe range. This case study used two

examples of the 18 logics, such as ‘FIX-RISING’ and

‘FIX-FALLING.’ The case study is aiming for

demonstrating correctness of the 3rd-party synthesis

tools at least for the two logics.

We used two Verilog files translated from FBDs

(Function Block Diagram) with ‘FBDtoVerilog,’ which

we intend to support the platform change from PLC-

based (FBD) to FPGA-based (Verilog). It will offer the

possibility for designer to change of platform more

seamlessly. First, we obtained Netlist from the Verilog

using ‘Symplify Pro’ automatic synthesis tool which

included in ‘Actel Libero IDE.’ Next, we obtained 1st

BLIF-MV from the same Verilog using ‘vl2mv,’ which

is in-house tool provided by VIS system. Lastly, we

obtained 2nd BLIF-MV from Netlist (EDIF format),

which synthesize by 3rd-party synthesis tool, using

‘EDIFtoBLIF-MV.’

We now can perform the VIS equivalence checking

between the Verilog program and the EDIF program

which has just been transformed from the Verilog. If the

verification succeeds, we can assure that the synthesis

process and tool (i.e., ‘Actel Libero IDE’) from Verilog

into EDIF worked correctly for the Verilog program. If

it fails, it means that the synthesis tool has some

problems to be analyzed in depth. Of course, we assume

that the proposed technique was thoroughly refined and

stabilized.

Fig.4 shows the results of the VIS verification. After

a sequence of VIS commands, the VIS produced a

successful result - “Networks are sequentially

equivalent.” for the two Verilog programs. Therefore,

we can assure that the FPGA synthesis tool - ‘Actel

Libero IDE’ works correctly for those Verilog programs

of ‘Fixed set-point rising trip logic’ and ‘Fixed set-point

falling trip logic.’

Fig. 4. Result of the VIS verification (excerpted)

Fig.5 shows the hypothetical failure case. We also

performed a case study with simple seeded errors (like

toggling 1 and 0) in order to check the correct

functioning of the implemented ‘EDIFtoBLIF-MV.’

The VIS resulted in a failure and also provided a

sequence of input variables, resulting in the failed result

(i.e., producing not equivalent outputs), called a

counterexample. Counterexamples of the VIS

verification can help analysts confirm whether the

synthesis works well or not.

Fig. 5. Results of the VIS verification (excerpted and edited)

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

5. Conclusion and Future Work

This paper proposes a formal verification technique

which can contribute to the correctness demonstration

of commercial FPGA synthesis processes and tools in

part. It formally checks the behavioral equivalence

between Verilog and subsequently synthesized Netlist

with the VIS verification system. If the formal

verification succeeds, then we can assure that the

synthesis process from Verilog into Netlist worked

correctly at least for the Verilog program.

In order to support the formal verification, we

developed the mechanical translator ‘EDIFtoBLIF-

MV,’ which translate EDIF into BLIF-MV, while

preserving their behavior equivalence. The translation

from EDIF into BLIF-MV consists of three steps –

Parsing, Pro-processing and Translation. We performed

the case study with Verilog programs designed for a

digital I&C system in Korea. It shows that the

verification technique can be used positively as a means

of demonstrating the correctness of the FPGA synthesis

tools of 3rd-party developers.

We are currently focusing on stabilizing the

transformation process including the translation rules

and the translator. We are also planning to perform

several full-scale case studies and compare the

correctness verification results and efficiency with the

commercial solution.

Acknowledgements

This research was supported, in part, by a grant from

the Korea Ministry of Science, ICT and Future Planning,

under the development of the integrated framework of

I&C dependability assessment, monitoring, and

response for nuclear facilities. It was also supported, in

part, by a grant from the Korea Atomic Energy

Research Institute, under the development of the core

software technologies of the integrated development

environment for FPGA-based controllers.

REFERENCES

[1] J. Yoo, J.-H. Lee and J.-S. Lee, A RESEARCH ON

SEAMLESS PLATFORM CHANGE OF REACTOR

PROTECTION SYSTEM FROM PLC TO FPGA, Nuclear

Engineering and Technology, no.4, p.477-488, 2013.

[2] D.-H. Lee, E.-S. Kim, J. Yoo, J.-S. Lee, and J.-G. Choi,

FBDtoVerilog 2.0: An automatic translation of FBD into

Verilog to develop FPGA, International Conference on

Information Science & Applications 2014 (ICISA2014), pp.

447–450, 2014.

[3] Synopsys, Synplify Pro, http://www.synopsys.com/Tools/

Implementation/FPGAImplementation/FPGASynthesis/Pages/

SynplifyPro.aspx

[4] Cadence Encounter RTL Compiler http://www.cadence.

com/products/ld/rtl_compiler/Pages/default.aspx

[5] IEC, IEC 61508: Functional safety of electrical, electronic

and programmable electronic (E/E/PE) safety-related systems,

International Standard, Second Edition, International

Electrotechnical Commission, Geneva, vol. 1, 2003.

[6] IEC, IEC 60880: Nuclear power plants - Instrumentation

and control systems - important to safety Software aspects for

computer-based systems performing category A functions,

2006.

[7] Mentor Graphics, FormalPro, http://www.mentor.com/

products/fv/formalpro/

[8] Cadence, Conformal, http://www.cadence.com/products/

ld/equivalence_checker/pages/default.aspx

[9] Synopsys, Formality, http://www.synopsys.com/Tools/

Verification/FormalEquivalence/Pages/Formality.aspx

[10] S.-Y. Huang and K.-T. Cheng, Fromal Equivalence

Checking and Debugging, Kliwer Academic Publishers, 1998.

[11] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-

Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards,

S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,

S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa, VIS : A

system for verification and synthesis, in the Eighth

International Conference on Computer Aided Verification,

CAV ’96, pp. 428–432, 1996.

[12] Electronic Industries Association, Electronic design

interchange format (EDIF), EIA-548, Version 2.0.0, 1998.

[13] R. K. Brayton, BLIF-MV: An interchange format for

design verification and synthesis, University of California,

Tech. Rep., 1991.

[14] S. T. Cheng, G. York, R. K. Brayton, VL2MV: A

Compiler from Verilog to BLIF-MV, HSIS Distribution, 1993.

[15] Korea Atomic Energy Research Institute (KAERI),

Software Design Specification for Reactor Protection System,

KNICS-RPS-SD231 Rev.02, 2006.

[16] Actel, Actel Libero IDE, http://www.actel.com/products/

software/

[17] S. Brown and J. Rose, FPGA and CPLD architectures: A

tutorial, IEEE Software, vol. 13, no. 2, pp. 42–57, 1996.

[18] Mentor Graphics Corporation, HDL Designer SeriesTM

User Manual, Tech. Rep., 2008.

[19] Xilinx, Xilinx ise design suite, http://www.xilinx.com/

products/

[20] Altera, Altera quartus ii, http://www.altera.com/products/

software/

[21] S. Palnitkar, Verilog HDL: A Guide to Digital Design

and Synthesis. McGraw-Hill Inc., 1997.

[22] Z. Navabi, VHDL: Analysis and Modeling of Digital

Systems. McGraw-Hill Inc., 1997.

[23] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri,

“NuSMV: A new symbolic model verifier,” in 11th

International Conference on Computer Aided Verification

(CAV ’99), pp. 495–499, 1999.

[24] E. Clarke and D. Kroening, Hardware verification using

ansi-c programs as a reference, in 2003 Asia and South

Pacific Design Automation Conference, pp. 308–311, 2003.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic

verification of finite-state concurrent systems using temporal

logic specifications, ACM Trans. Programming Languages

and Systems, vol. 8, no. 2, pp.244–263, 1986.

[26] E. M. Clarke, O. Grumberg, and D. A. Peled, Model

Checking, MIT Press, 1999.

[27] J.-H. Lee, Automatic translation for equivalence

checking between verilog and edif netlist with vis, Master’s

thesis, Konkuk University, 2013.

